NP-complete Partitioning Problems

Subset Sum: Given a list of t positive integers $S = \{x_1, x_2, \dots, x_t\}$ and an integer B, is there a subset $S' \subseteq S$ s.t. $\sum_{x_i \in S'} x_i = B$.

- Yes instance: $S = \{1, 2, 5, 7, 8, 10, 11\}, B = 22$.
- No instance: $S = \{4, 10, 11, 12, 15\}, B = 28$.

Note: It is still NP-complete if $B = \sum_i x_i/2$

3-Partition Given a list of 3t positive integers $S = \{x_1, x_2, \ldots, x_{3t}\}$ with $\sum_{x_i \in S} x_i = tB$, and each x_i satisfying $B/4 < x_i < B/2$, can you partition S into t groups of size 3, such that each group sums to exactly B.

- Yes instance: $S = \{26, 26, 27, 28, 29, 29, 31, 33, 39, 40, 45, 47\}$
- No instance: $S = \{26, 26, 27, 28, 29, 29, 31, 33, 38, 40, 45, 48\}$ (I think)

$P||C_{\max}|$

Problem: Given n jobs with processing times p_j , schedule them on m machines so as to minimize the makespan.

Decision version: Given n jobs with processing times p_j and a number D, can you schedule them on m machines so as to complete by time D.

Idea of reduction: Given a subset sum instance, create a 2-machine instance of $P||C_{\max}$, with $p_j = x_j$ and D = B. Now there is a feasible schedule iff there is a subset summing to B.

Subset Sun $\leq P || C max$ - Given a rapit to subject sum S= {X, - Xm} B, with B= {Xi}2 poly - Form an input to PIIC max with the njobs, P. = Xi, 2 machier D=R. - Sove PIICmonx output yes) no Show Bubset Sum outputs yes (=) Pl/Come autputs yes PF => If subsetsime yes, then the are two subsets of jobs Si, Se each summing to B, : the jobs en each mache. sum to B=D, so the answer is yes

E IF AllComax is yes, then $C_{max} \neq D$, $dA \neq P_{j} = 2D$, so CmarzD, so the schedule gover 2 sets of jobs, each of total see D, thefoe it gues a pertition of S note 2 sets of she B. \bigotimes Also, Fle reduction (sjolls) copying He upper : polynomial the

$1|r_j|L_{\max}$

Reduction: Reduce 3-partition to $1|r_j|L_{\max}$.

3-Partition Given a list of 3t positive integers $S = \{x_1, x_2, \ldots, x_{3t}\}$ with $\sum_{x_i \in S} x_i = tB$, can you partition S into t groups of size 3, such that each group sums to exactly B, $each \quad \frac{\beta}{\sqrt{2}} \times \frac{\beta}{\sqrt{2}} = \frac{\beta}{\sqrt{2}}$.

Given a 3-partition instance, we will creat a $1|r_j|L_{\text{max}}$ instance in the following way:

Jobs: n = 4t - 1 jobs, t - 1 of which are dummy jobs

Dummy Jobs:	j	$\mid r_{j}$	p_{j}	$ d_j$
	1	В	1	B+1
	2	2B + 1	1	2B+2
	3	3B + 2	1	3B+3
	:	•	:	:
	t-1	(t-1)B + (t-2)	1	(t-1)B + (t-1)

Real Jobs:

- indexed t through 4t-1.
- All have $r_j = 0$

- All have $d_j = tb + (t-1)$
- $p_j = x_{j-(t-1)}$

3 partin zyes (=) (max = 0 Reduction so that clipbs meet Heir deadhes the 3-pertition solution has a دطن حر) 4 graps of 3 each summing to 100 00 201 202 98 100 302 203 rest would WЗ 704 (=100 p=1 0, =1 01 miss & G=20) PJ=1 0J=202

- All have $d_j = tb + (t-1)$
- $p_j = x_{j-(t-1)}$

• All have $d_j = tb + (t-1)$

Show

• $p_j = x_{j-(t-1)}$

3 petrin is yes $\bigcirc (max = 0)$ » if 3-petition yes, schellefollows Re 3-petition (o). Eifzpetite i no, tilen de grep is >B, col that forces c jeb to mais 175 deally

- All have $d_j = tb + (t-1)$
- $p_j = x_{j-(t-1)}$

Proof

Real Jobs:

- indexed t through 4t-1.
- All have $r_j = 0$
- All have $d_j = tb + (t 1)$
- $p_j = x_{j-(t-1)}$

Idea of Proof: Argue that there is a schedule with $L_{\text{max}} = 0$ iff the partition instance is yes.