NP-complete Partitioning Problems

Subset Sum: Given a list of t positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and an integer B, is there a subset $S^{\prime} \subseteq S$ s.t. $\sum_{x_{i} \in S^{\prime}} x_{i}=B$.

- Yes instance: $S=\{1,2,5,7,8,10,11\}, B=22$.
- No instance: $S=\{4,10,11,12,15\}, B=28$.

Note: It is still NP-complete if $B=\sum_{i} x_{i} / 2$

3-Partition Given a list of $3 t$ positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{3 t}\right\}$ with $\Sigma_{x_{i} \in S} x_{i}=t B$, and each x_{i} satisfying $B / 4<x_{i}<B / 2$, can you partition S into t groups of size 3 , such that each group sums to exactly B.

- Yes instance: $S=\{26,26,27,28,29,29,31,33,39,40,45,47\}$
- No instance: $S=\{26,26,27,28,29,29,31,33,38,40,45,48\}$ (I think)

$$
4 \text { graph of } 100
$$

Problem: Given n jobs with processing times p_{j}, schedule them on m machines so as to minimize the makespan.

Decision version: Given n jobs with processing times p_{j} and a number D, can you schedule them on m machines so as to complete by time D.

Sample inputs:

- Jobs are $\{1,2,5,7,8,10,11\}, 2$ machines, $D=22$.

- Jobs are $S=\{4,4,10,11,12,15\}, 3$ machines $D=20$. nO

Reduction: Subset sam reduces to $P \| C_{\text {max }}$.

Idea of reduction: Given a subset sum instance, create a 2 -machine instance of $P \| C_{\text {max }}$, with $p_{j}=x_{j}$ and $D=B$. Now there is a feasible schedule eff there is a subset summing to B.

Subset Sum $\leq P \| C_{\max }$

- Given a moet to subset sum $S=\left\{x_{1} \ldots X_{n}\right\}$ B, with $B=\sum x_{i} \mid 2$ c poly
- Form an input to $P \| C_{\text {max }}$ with the n jobs, $P_{i}=x_{i}, 2$ machines $D=B$.
- save PUl max arput yes) no

Show subset Sum outputs yes
\Leftrightarrow All Comas outputs yes
Pf \Rightarrow If subetsumayes, the the as two subsets of jobs S_{1}, f_{2} each sunning to B, \therefore the jobs en each mach sum to $B=D$, so the answer is yes
\Leftrightarrow If pl|cmax is yes, then $C_{\text {max }} \leqslant D$, bet $\sum p_{j}=2 D$, so $C_{\text {max }}$ D, so the scledde gines 2 sets ofjobs, each of total sie D, theefoe itgnes a pertition of S nto 2 sets or siie B.
\otimes
Also, the reductio esjalsd copgiz tle imput \therefore polynomial the

$$
\underline{1}\left|r_{j}\right| L_{\max }
$$

Reduction: Reduce 3-partition to $1\left|r_{j}\right| L_{\text {max }}$.
3-Partition Given a list of 3t positive integers $S=\left\{x_{1}, x_{2}, \ldots, x_{3 t}\right\}$ with $\Sigma_{x_{i} \in S} x_{i}=t B$, can you partition S into t groups of size 3, such that each group sums to exactly $B_{\text {, }}$ each $\frac{B}{4} \leq x_{i} \subseteq \frac{B}{2}$.
Given a 3-partition instance, we will creat a $1\left|r_{j}\right| L_{\max }$ instance in the following way:

Jobs: $n=4 t-1$ jobs, $t-1$ of which are dummy jobs

	j	r_{j}	p_{j}	d_{j}
$\mathbf{1}$	\mathbf{B}	$\mathbf{1}$	$\mathbf{B}+\mathbf{1}$	
Dummy Jobs:	$\mathbf{2}$	$\mathbf{2 B}+\mathbf{1}$	$\mathbf{1}$	$\mathbf{2 B}+\mathbf{2}$
	$\mathbf{3}$	$\mathbf{3 B}+\mathbf{2}$	$\mathbf{1}$	$\mathbf{3 B + 3}$
\vdots	\vdots	\vdots	\vdots	
	$t-1$	$(t-1) B+(t-2)$	$\mathbf{1}$	$(t-1) B+(t-1)$

Real Jobs:

- indexed t through $4 t-1$.
- All have $r_{j}=0$
- All have $d_{j}=t b+(t-1)$
- $p_{j}=x_{j-(t-1)}$

3 partion $=y e s \Leftrightarrow \quad \Leftrightarrow \quad \max ^{2} \geq 0$
Reduction so that alljobs meet thir cladhes ufe 3-pertition has a solution
(12 jobs 4 grapsot 3 eack summin to 100 d

$r_{0}=100$ 㤙 $=1 \quad d_{0}=101$
$r_{5}=201 p_{j}=1 d_{j}=202$
and ajob weld
miss 5 deded hee

- All have $d_{j}=t b+(t-1)$
- $p_{j}=x_{j-(t-1)}$

- All have $d_{j}=t b+(t-1)$

Show poly
serration is yes
($\theta l_{\text {max }}=0$
\Rightarrow it 3 -petitions yes, scleddefotlons te 3 -portion s of.
E if 3 -pertitu io no, then ore grep is ΔB, ad that forces C job to mos iss deedle.

- All have $d_{j}=t b+(t-1)$
- $p_{j}=x_{j-(t-1)}$

Proof

	j	r_{j}	p_{j}	d_{j}
	$\mathbf{1}$	\mathbf{B}	$\mathbf{1}$	$\mathbf{B}+\mathbf{1}$
Dummy Jobs:	$\mathbf{2}$	$\mathbf{2 B}+\mathbf{1}$	$\mathbf{1}$	$\mathbf{2 B + 2}$
	$\mathbf{3}$	$\mathbf{3 B}+\mathbf{2}$	$\mathbf{1}$	$\mathbf{3 B + 3}$
\vdots	\vdots	\vdots	\vdots	
	$t-1$	$(t-1) B+(t-2)$	$\mathbf{1}$	$(t-1) B+(t-1)$

Real Jobs:

- indexed t through $4 t-1$.
- All have $r_{j}=0$
- All have $d_{j}=t b+(t-1)$
- $p_{j}=x_{j-(t-1)}$

Idea of Proof: Argue that there is a schedule with $L_{\max }=0$ iff the partition instance is yes.

